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A detailed procedure is described for computing discrete equations of 
motion for a fluid, to implement a new method which turns out to be sub- 
stantially more efficient than previous methods for calculating transport 
coefficients. This paper describes the calculations of discrete averages from 
molecular dynamics data and the numerical extraction of the equation-of- 
motion coefficients in a way which makes maximum use of the geometric 
symmetry of the problem. Extrapolation to the infinite-system limit and 
eventual computation of transport coefficients by renormalization are 
discussed. The method described in detail here is briefly sketched and applied 
numerically to computing the viscosity of the soft-sphere liquid in a sub- 
sequent ,paper. 
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1. I N T R O D U C T I O N  

Recent ly  a discrete fo rmula t ion  o f  hyd rodynamics  was p roposed  which 
appears  to t rea t  fluid mot ions  in a more  nature/1 way than  con t inuum 
theor ies ;  it was shown to be as comple te  a coarse-gra ined descr ip t ion  o f  a 
fluid as possible,  in a cer tain sense. (1) Since then prescr ipt ions have been found  
for  extract ing the discrete equat ions  o f  mo t ion  f rom ensemble averages o f  
discrete variables,  (2~ and  for  renormal iz ing  the equat ions  o f  mo t ion  to give the 
macroscop ic  t r anspor t  coefficients. (3) The purpose  o f  the present  paper  is to 
give a deta i led and workab le  me thod  for  the compu ta t ion  o f  the equat ions  
o f  mo t ion  f rom molecu la r  dynamics  da ta  on finite systems. A n  accompany ing  
pape r  (4~ gives numer ica l  results for  the soft-sphere l iquid (r oz r-12), for  
which the t r anspor t  coefficients have been previously  calculated(5); our  
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results are consistent with the previous ones, but require about 100 times less 
calculation. 

The discrete hydrodynamic variables and equations of motion have been 
described in detail previouslyJ a,2) Briefly, a fluid is subdivided into a simple 
cubic lattice of cells of width W, whose contents of the conserved quantities 
momentum, energy, and number (at discrete times m~-, integer multiples of some 
basic time ~-) are the fundamental variables of the theory. Such a content 
is denoted by c~z~, where e~ = P~, P~, Pz, E, or N indicates which content is 
meant, l is a cell label, and m indicates the time. The discrete equation of 
motion will predict the transfer X~zm of each quantity a across each face 
(labeled f )  during each time interval (labeled by its midpoint m, a half- 
integer); it is the analog of the continuum equation of motion which predicts 
fluxes. Details of the numerical calculation of fhe contents and transfers 
from molecular dynamics trajectories are given in an accompanying paper. (~) 

The discrete equation of motion gives the conditional mean transfer 
x~ii/z over the interval (0, r) in terms of the history of the system (contents 
C~zo and transfers x,f,, with m < 0). We will denote a compound subscript 
elm or ~Irn b y ]  for brevity, and a history variable by hj (a content if m is an 
integer, transfer if not). The conditional mean is parametrized as a power series 
in the hj; given a set of indices (some of which may be identical)_j = 
{Jl,J2 .... }, the product of the corresponding hj is denoted by ~.. A complete 
power series is thus 

[xsl = ~ B2;~h~ (1.1) 
/c 

where we have described conditional moments as well as means by replacing 
x; by an arbitrary product _x;. As in Ref. 3, we have subtracted certain 
nominal values from the contents and transfers so they are small near 
equilibrium; hence the power series converges rapidly. The coefficients B 
provide an exactly renormalizable description of the system. (a) 

The B's can be numerically calculated by doing a molecular dynamics 
simulation. The direct results of such a simulation are equilibrium averages 
of products of contents and transfers. Denoting a general discrete variable 
(content or transfer) by v~, such an average will be denoted <_v_s >. The averages 
are related to the B's through equations obtainable (2) from Eq. (1.1) by multi- 
plying by hk, and averaging: 

<xlhk, > ~ B!;k<hk_hk, > (1.2) 
/r 

Computation of the macroscopic transport coefficients requires re- 
normalization of the B's (i.e., repeatedly doubling W and r). (a) This is most 
easily done using an equivalent but slightly different parametrization of the 
condition mean, in terms of the "excess-transfer parameters" /~j;k. (These 
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differ only in how they treat the possible non-Markovian dependence of 
Eq. (1.l) on past transfers xk; they are an expansion in Axe, the excess above 
the expected value [xk].) Since we renormalize in an infinite system, we 
require the infinite-system l imi t /~k  of the small-cell equations of motion. 

In this paper we concern ourselves with determining this/?~ (which can 
be thought of as giving "ba re"  transport coefficients) from raw molecular 
dynamics data (a time series of the vj). The procedures required are (1) 
averaging the data to estimate (vi), (2) obtaining B's from Eq. (1.2), (3) 
obtaining/~ from B, and (4) extrapolating to the infinite system. Obviously 
step 1 must be done first. In Section 4 a strong argument is given that step 4 
(extrapolation) should not precede step 2 because the conditional means 
(B or/~) converge much faster than ensemble averages to their infinite-system 
values. The extrapolation procedure described in Section 4 seems to apply best 
to/~, implying that step 3 precedes step 4. Thus we conclude that steps 1-4 
should be done in that order; they are described respectively in Section 2, 
Section 3, Ref. 4, and Section 4. 

2. C O M P U T I N G  N O N E Q U I V A L E N T  AVERAGES:  S Y M M E T R Y  

We wish to determine the equation-of-motion coefficients ~;~ from Eq. 
(1.2), which requires estimates (~.) of finite-system ensemble averages. These 
we must obtain from raw molecular dynamics data v~ D (calculated as de- 
scribed in Ref. 4 and stored on magnetic tape) containing five contents and 
15 transfers for each cell and each time interval calculated (i.e., those whose 
time index m satisfies 0 < m ~< rotor, if the duration of the run is mtot~'). 
Clearly, many of the B's are equivalent because of rotational and trans- 
lational symmetry, so we wish only to calculate one from each equivalence 
class. Similarly many ~. are equivalent (hence their averages (~.) are the 
same in a symmetry-invariant ensemble such as the microcanonical one used 
in molecular dynamics). Products of raw data v~ D are of course not invariant, 
even after the usual time-averaging; clearly we obtain the "best statistics" 
by averag!ng ~M~ over all equivalent variable-products ~ .  

Specifically, the group G under which our system is invariant is the 
product of the cubic group Oh (SchSnflies notation) of rotations about some 
origin, say a cube corner, and the translation group T of our cell lattice (an 
infinite group for an infinite lattice, but finite for our finite, periodic molecular 
dynamics systems. We assume the finite systems are cubical so Oh symmetry 
may still be used). An operation g ~ G acts on cell labels l and face labels f 
in the obvious waym; its action can be defined on the compound label j 
(i.e., dm or ~fm). 

The sign change in the content or transfer vj resulting from g (defined 
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precisely in Section 5 of Ref. 1) is denoted p(j; g). Then the invariance of the 
B coefficients is expressed by 

where 

~.;k_ = p(J" u k; g)B~;~ (2.1) 

p(j; g) = ~ p(j; g) (2.2) 
J~ 

Let us label the equivalence classes of combined sets _j w _k by integers/3 
for convenience in computing; a few such classes are listed in Table I of 
Ref. 4. Pick some arbitrary representative, denoted j(/3), __k(/3) of each class. 
We need only calculate 

BB -- Bj<~);k<~) (2.3) 

for each class/3. 
Enumeration of equivalence classes of products ~. (whose averages differ 

only in sign: ( ~ )  = p(_j, g)(v@) is similar. However, the relevant group 
(call it G') is larger; it includes time translation (by multiples of ~) and time 
reversal (which introduces into p a sign change for each momentum and each 
transfer) because these are symmetries of the equations of motion. We label 
the equivalence classes of j ' s  by integers ~,. These classes are different from 
those defined for the B's. Because G c G', each class/3 is a subclass of some 
~,, which we shall call ~,(/3); 7 may contain several/3's. For convenience, we 
may choose labels so that y is the same as one of these/3's. [In Table II of 
Ref. 4, ~(/3) =/3, but this will not always be true.] The nonequivalent averages 
we wish to compute are therefore 

(_v~) - (_vj,<~>) ( 2 . 4 )  

where j '(y) is an arbitrary representative of class 7'- 

These are best estimated from the raw data vJg D by averaging over time, 
rotations, and translations: 

1 oj.,~ _v~],> (2.5) 
(_v~) = Tr 

where the sum is over all index sets gj'(~,) that are equivalent under G' to 
_j'(~,) and all of whose time indices m satisfy 0 < m ~< mtot (say N terms). 

The most straightforward way to do the rotation-translation sum in 
Eq. (2.5) is to simply let g run over all rotations (48) and translations (27 in a 
3 x 3 x 3-cell system.) If j '  has a symmetry group S of order O(S), this 
counts each term O(S) times (as many as 48). This is unacceptably inefficient 
if many averages (~'s) are desired; the averaging can easily take longer than 
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the actual molecular dynamics. Therefore we must find a way to add each 
distinct gj only once. 

A basic (and easily verified) enumeration theorem says that all distinct 
.gj' are obtained by taking one g from each coset gS c G (for present pur- 
poses, time translations and inversions are not included in the group; we 
sum over them separately at the end). Thinking of the index set as a geo- 
metrical object, it is obvious that all translations are distinct (and easily 
generated by machine). So our general procedure is to enumerate the distinct 
rotations, and for each one generate all translations. More precisely, "distinct 
rotations" are defined in terms of a quotient group. Let T be the translation 
group. It is a normal subgroup of G, so the quotient G/T is well-defined (it is 
isomorphic to OR) and there is a natural homomorphism h from G to G/T. 
If  S'  is the image of S under h, the cosets g'S'  c G/T are the "distinct 
rotations" o f j  (in crystallography, S' would be called the point group of S). 
Each such coset is the image of a class of cosets gS c G which partition a set 
TgS (called a double coset); the double cosets partition G, and are in 1-1 
correspondence with the g'S'. We can therefore generate a representative g of 
each coset gS c G, if we have a list of (arbitrarily chosen) representatives g '  
for all eosets g'S' c G/T: simply pick g" so h(g") = g' (g" may as well be a 
rotation about the origin; this specifies it uniquely) and generate g =- tg" 
for all t e T. (That we need all t e T to get all gS c Tg"S follows because S 
contains no translations, hence the intersection T c~ (g"Sg'-1) contains only 
the identity.) 

The computer algorithm by which the averages given in Ref. 4 were 
obtained uses exactly the above procedure. The averages calculated so far 
involve eight different point groups S'  (Oh, D4~, C4~, D2h, $2, crh, E). A list 
of coset representatives g '  for each is stored (a rotation is coded by an integer 
from 1 to 48, which is interpreted by a subroutine which rotates indices). The 
inputs to the program are just j ' (7)  (coordinates of cells, etc.) and an integer 
label indicating its point group S'. The program computes g')" and then 
performs all possible translations, adding the corresponding products Vgj.MD 
computed from the molecular dynamics tape; an outer loop sums over time 
translations. Time-reversal symmetry is included by hand by computing 
averages f o r j '  and its time-reversal image and adding. 

3. EXTRACTING EQUATIONS OF M O T I O N  

The coefficients B!;k of the equation of motion (1.1) are to be computed 
from averages ( ~ )  using Eq. (1.2). In practice we must deal with cumulants 
B~;k (parametrizing conditional cumulant means ~a)) defined by 

~:-~ = ~ B!%;-~/~!%;-~"" (3.1) 
!(z)...k<z)-.. 
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(the sum is over all partitions _j(1) u j(2) u ... of_j, and all partitions of k). 
Cumulant averages are defined by <a) 

<v j ) =  ~, /v \ely " . . . .  (3.2) 
_ \ _ i ( i ) /  \_i(2) /  _j(~)... 

The advantage of this is that only a finite number of the B c are large; it also 
turns out that many averages which contribute strongly to Eq. (1.2) have 
small cumulants (i.e., are well approximated by their factorizations) and so 
need not be calculated in the cumulant approach. 

The cumulant form of Eq. (1.2) is 

<x!h_k,} c = ~ ~, ~ B~<l)~(1)BjSmk_(2) "" <hk,(1,)h_k(1,)} . . . .  (3.3) 
k !( i) , . . !( i ) . . .  ~,(i,)..._k(1,)... 

where the second sum is over all partitions of_k u_j into components k_(1) u 
j(1),.., and the third sum is over all partitions of _k' w _k (whose components 
are labeled 1', 2',...). The terms on the right-hand side are also required to 
be linked by k-indices (i.e., each k E k connects one B to one <...} by being a 
subscript of both; all factors must be indirectly connected in this fashion). 
This result may be proved (by induction on n, the number of indices in j )  by 
plugging Eqs. (3.1) and (3.2), and Eq. (3.3) for small n, into Eq. (1.2); un- 
linked terms cancel, leaving Eq. (3.3). Equatioff (3.3) contains an infinite 
number of equations, many of which are geometrically equivalent. In a 
practical calculation we want to use only one equation from each equivalence 
class; it turns out we can also avoid computing separately equivalent terms 
on the right-hand side. Accordingly, we classify the terms on the right side 
of Eq. (3.3) [each specified by the partitions k(1) .-. j(1) ... and _k'(l')..- k(l ') . . .]  
into equivalence classes under rotation-translations g e G, labeling the classes 
by integers t~. If we arbitrarily choose a representative term from each class 
/z whose index-set partitions k~(1),...,_j,(1),...,k,'(l') ..... k~(l') .... have a 
symmetry group S,, then the terms in the class are in 1-1 correspondence with 
cosets g S ,  c G. The terms within a class each make the same contribution 
(except possibly for a sign) to Eq. (3.3), namely 

+ B~(~)Be( m ... (vm,)} ... (3.4) 

where we have defined/9(1) as the equivalence class of_j,(1) u k,(1) [so there 
is a rotation g(1) so _k,(1) = g(1)j([3(1)), etc.]; similarly, y(l ')  is the class of 
k '( l ' )  u k(l ') [related by the rotation g(l')]. (We have omitted the super- 
scripts on B ~ and <v}o; from now on everything is a cumulant.) These rota- 
tions determine the signs of the terms (3.4); the representative term has sign 

p(j(/3(1) u _k(~(1)); g(1)).., o( j_ ( r ( l ' ) ) ;g ( l ' ) ) . . .  (3.5) 

and the others (associated with cosets g S , ,  g g: identity) have the additional 
sign factor 

p(s u _k,'; g) (3.6) 
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wherej ,  =ju(1) w_j',(2) w ..., etc. These terms contribute to various different 
equations (3.3) (i.e., difl'erentj w k'); we must decide how many contribute to 
the equations we are interested in. The various j w k' coming from a class 
are related by g ~ G and therefore comprise an equivalence class, say /3~' 
(we omit the subscript below). Therefore we are interested in only one of 
them, which may be chosen to be the representative j(/3') w k(/3') defined in 
Section 2, which has symmetry group S~,. This may not be the same as 

j ,  w k, ' ;  let us say it is g,_j, w _k,'. Then the term associated with the coset 
g , S ,  is one of the ones we want; its sign is given by Eqs. (3.5) and (3.6) with 
g = g, .  However, we may rotate everything by elements of Se, without 
changing j w/__c' (but not by anything outside Se,). Thus the cosets gSu 
corresponding to terms contributing to the equation are exactly those in the 
double coset SB, g , S , .  It is easy to show that these correspond to cosets 
g y l g S ,  ~ (gy~SB,g,) (note that S u c gylSB,gu), so the number of such terms 
is exactlyO(SB,)/O(S,).  If  all these terms have the same sign, this [with factors 
(3.5) and (3.6)] is exactly the coefficient of (3.4) in Eq. (3.3). This is in fact true; 
by (3.6) the sign can be changed only if some g ~ (gy 1SB,gu) changes the sign 
of ju w _k,', i.e., some symmetry of/3' changes its sign. This of course implies 
[by Eq. (2.1)] that B B, vanishes by symmetry; we may simply ignore ~'s that 

/ give such a/3~. 
We may now incorporate these symmetry considerations into Eq. (3.3). 

For each/3' (whose Ba, does not vanish by symmetry) we have [using Eqs. 
(3.4)-(3.6)] 

(v~B, ~) = ~ C~B~I~B~c2 ~ .." (v_~cl, ~) ... (3.7) 
/ t  

where v(/3') is defined in Section 2. The sum is over all/z for which flu' =/3 '  
and 

c~ =- + o(s~ , ) /o(s . )  (3.8) 
whose sign is Eq. (3.5) times P(L w k~,; g~). Geometrically, C u is just the 
number of distinct rotations of ~ tha t  leave/3' invariant. 

Of course Eq. (3.7) still involves an infinite number of equations with an 
infinite number of terms. However, only a finite number affect any particular 
output (say one of the B's) beyond any fixed tolerance; thus the system can 
be solved in practice by successive truncation. Given a set of N desired B~'s, 
the choice of N equations to solve for them is unambiguous: clearly Eq. (3.7) 
should be regarded as the equation for Ba,. It can be seen [more easily from 
Eq. (3.3) than (3.7)] that the coefficient of B~, contains a product of squares 
(hkhk) which should (and in the cases calculated numerically, ~4) strongly 
does) dominate the equation. Techniques for choosing which B's to calculate, 
and which terms/z to include, are discussed in Ref. 4. 

The solution should clearly be done in hierarchical fashion, in order of 
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increasing order o f j  (i.e., number of indices in the setj.) Equations of order 
1 involve only B's of order 1 (and only linearly), so these can be determined 
without knowing the higher order B's. In fact thej 's  themselves are decoupled, 
in the following sense: One can collect classes fl into "prediction systems" 
according to the equivalence class ~,' ofj(/~), the variable being predicted by 
the equation of motion. Thus for order 1 there are four ~,', hence four pre- 
diction systems (energy, number, longitudinal momentum, and shear momen- 
tum transfers; only the shear transfers have been calculated numerically(4)). 
Equation (3.3) does not couple these systems. Once the B's of order 1 are 
computed, these may be regarded as known in the equations (3.3) for the B's 
of order two, which are again linear equations in which the prediction 
systems decouple. This may be continued indefinitely; it is noteworthy that 
even though Eq. (3.3) is superficially nonlinear, it may be solved by purely 
linear methods. 

One subtlety should be mentioned; Eq. (1.2) [and hence (3.3)] holds in 
principle for averages (vy) calculated in any ensemble (whose phase space dis- 
tribution depends only on cell contents and previous transfers), in particular 
the canonical and microcanonical ensembles. [In fact, a careful mathe- 
matical statement of the basic assumption of our theory, namely the con- 
vergence of Eq. (1.1), would probably say that Eq. (1.2) is correct for some 
class of '~ well-behaved" ensemble distribution functions.] However that does 
not guarantee that Eq. (1.2) determines the B's uniquely; this will only be 
true if the ensemble includes a complete sampling of cell histories. This is 
presumably true in the canonical ensemble; however, in the microcanonical 
ensemble, histories in which the total system contents deviate from their 
prescribed values are not represented at all. This leads to an ambiguity in the 
determination of the B!;_~ (let us consider noncumulant B's for simplicity, 
although the following argument is also true for eumulants). Specifically, for 
each], k', and a = P, E, or N, define a variable A!~k. with which to alter the 
B's, 

+ 0.9) 

The sum is over the composite indices k ~ k which refer to contents [so k = 
(~, l, 0)], and _k' is k with k omitted. It is not hard to see that in the micro- 
canonical ensemble the new B still satisfies Eq. (1.2); this is because the 
coefficient of A involves an average with a factor ~z C~o, which vanishes 
identically (recall that C~o is a content minus its nominal value, which we can 
take to be its microcanonical average). However, insisting the B's be invariant 
under G requires many A's to vanish (namely those for which some operation 
g preserves j,  % and _k' but p(_j', k; g) = - 1 ; this is true for all B's calculated 
in Ref. 4). When A does not vanish by symmetry, Eq. (3.9) says that there are 
classes of B's (generated by allowing some content variable to translate over 
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the whole system) to which a common constant may be added. However, 
some of the B's in such a class should be negligible (unless the system is very 
small) because they involve the content of a cell far from _x/. Let us choose 
such a distant 1 for each j, and constrain ~.;_k to vanish if_k contains a content 
of cell I. This removes the ambiguity, and the equations for the remaining 
B's are nonsingular. This procedure defines a set of "microcanonical" B's 
which are different from the correct ones, but which should approach them 
rapidly as the system enlarges (and the true values of the B's we constrain to 
vanish become small). 

4. I N F I N I T E - S Y S T E M  L I M I T  

The procedure of the previous section gives the equation-of-motion 
coefficients ~.;_k for finite systems. As discussed in Section 1, these should be 
converted into excess-transfer parameters/~. A straightforward technique for 
doing this is described in Ref. 4; the numerical differences are quite small. In 
this section we describe the extrapolation of the finite-system/~'s to the in- 
finite system. 

We first compare the system-size dependence of B (or/~) to that of the 
averages. A considerable amount is known about the system-size dependence 
of microcanonical averages. (7) In the dilute limit, for example, the velocity 
correlation function (v#j) has a size dependence of order N -1 (N is the 
number of particles). This can be shown from the microcanonical velocity 
distribution function 

P(vl ... vN) = ~ ( ~  v~)S(vl,..., vN) (4.1) 

in which we have separated a smooth part S (a product of independent 
distributions of the v~, namely Maxwell distributions, which do not depend 
on system size) from the S-function which expresses the effect of the system 
size through the microcanonical constraint. It follows from Eq. (4.1) that 
(v#j) oc - ( N  - 1)-1; this can be understood by observing that if v~ takes a 
certain value, the other velocities are constrained to average to - v J ( N  - 1), 
hence ( v i v j )  = - ( v 2 ) / ( N  - 1). 

This argument can be roughly generalized to cell-variable averages. 
Suppose the distribution of transfers and history variables is written 

where the system-size effects mostly enter through the S-functions, which 
express all the microcanonical constraints. We assume S is smooth and does 
not strongly correlate the contents (say roughly a product of Gaussians). This 
then has the same form as Eq. (4.1), and content averages ( c ~ o c ~ z , o )  clearly 
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have a term of order N -1, where now N is the number of cells. Whether 
averages involving transfers also have this behavior is less clear; it is known C7) 
that (Xp~/,m) (the longitudinal momentum transfer, proportional to the virial 
pressure) does not, but this may be a special case. 

The critical question now is whether the B's or/~'s have the same strong 
N dependence. These parametrize conditional means [~.] in ensembles of fixed 
history, which may be written in terms of Eq. (4.2): 

[_x !] = f P(xl,2, h)x ! dx , /f h) dxl,2 (4.3) 

from which the 3-function (being independent of xl/2) simply cancels, leaving 
the smooth S, which (we assumed) is not responsible for strong size de- 
pendence. 

This argument, while not at all rigorous, strongly suggests that the B'S 
and/? 's  do not have the N-1 size dependence of  the averages, and therefore 
converge much faster. It is this expectation which leads us to extrapolate after, 
rather than before, converting the averages into B's. The expectation seems 
to be borne out by numerical calculations3 4) 

Let us denote the/~'s for a system of M x M x M cells b y / ~ .  We 
could of course estimate the infinite-system coefficients/~o by/~M for some 
large M. However, there is a much more rapidly convergent technique, 
which involves approximately expressing/~ in terms of/~*. The power-series 

~M coefficients B!:~ describe the dependence of the conditional cumulant [_xl] on 
the finite-system history variables: if h~ is a content of cell l, for example, 
--M B!;_k may be thought of as describing the effect on [x!] of that particular 
disturbance near I that corresponds to an increase in hk. We want to estimate 
[xj] in terms of the infinite-system/~OO,s. Setting/~M __ /~o would correspond 
to approximating the finite system by an infinite system whose history 
variables are hk within a small M x M x M region and zero outside. Clearly 
this ignores the periodic nature of the finite system; it would be much better 
to repeat the finite-system he in every periodic image (obtained by a trans- 
lation q whose components are multiples of MW). Computing [~] in such a 
system as though it were truly infinite (i.e., using B~) and equating the 
resulting power series in the finite-system he term by term to the correct one 
(involving/~M) gives (for _k = k, k ' . . . )  

/~;~ ~ ~ -= (4.4) _ - B ! ; { q e , q ' e ' , . . . )  
qgq'~.. .  

where q, q',.., range over all image translations described above. Essentially 
Eq. (4.4) computes the effect of a disturbance by superimposing the effect of 
all its images. It is straightforward to show that Eq. (4.4) has the same form 
for cumulant and noncumulant B's. 

The above argument could also be applied to B (so that the he include 
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past transfers, rather than excess transfers as implicitly assumed above), 
leading to a version of Eq. (4.4) without tildes. The approach we used is better 
if/~ converges faster than B; this should be tested numerically. 

Equation (4.4) is used to estimate ~ as follows: one calculates/TB M for 
some particular M and set of/3's. Writing Eq. (4.4) for each, one solves for 
the corresponding/~B~'s. Calling these estimates/~y,M, we expect they con- 
verge faster than ~M. This is verified numerically in Ref. 4. 

5. D I S C U S S I O N  

We have derived an explicit procedure for computing the infinite-fluid 
equation-of-motion coefficients /~o from molecular dynamics data. From 
these one can compute " b a r e "  transport coefficients, in the manner described 
in Re(, 3. This has been done numerically (4~ for the soft-sphere liquid, obtain- 
ing some of  the B's and the bare viscosity. The bare viscosity is equal to the 
known macroscopic viscosity (5~ (within the latter's 7~o statistical uncertainty) 
and the computation time is enormously less. This is because we extract from 
molecular dynamics only information about small-scale, short-lived fluctua- 
tions (the small-scale B's). The large-scale behavior, which previous methods 
must simulate directly at much greater expense, is treated within our 
formulation by an exact renormalization transformation/3~ 
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